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Abstract

Classical kinematical groups are anajysed irom the viewpoint of the cohomology theory
of abstract groups vsing group sxicosim and F-cnlargement theory.

Intraduction

The purpase of this article is to discuss the kinematical geoups of physics
from the point of view o f group extension theory. A group extension may
be loosely described as = "mup which is obtained by weaving t@gs.ther
two other groups. Most of the kinematical groups of physics are in fact
group extensions. The best known and most thorovghly irwestigamd of
these is the Poincaré group of special refativity. The Poincaré group is an
example of the most sitaple kind, a semi-direct product. Its structure
may be symbolised by {Michel, 1967)

P=STXulL
where ST is the spatiotempora transiation gro ;* L the Lorentz group
and the symbol %" denotes the natural action of L a3 a group of auto-

morphisms of ST. The notation in brief means tha: P=S8T.L, ST <P,
L<P, PIST=L, STNNL=1 and for 157, ~reL; ataA™l=A.¢ and
specifies P completely in terms of ST and L. P is said to be a semi-direct
oroduct of L by §7. _

The Galilei group of Newtonian relativity (Lévy-Leblond, 1671 ; Whisten,
1972) has a richer structure than the Poincaré group. iv that it has a
spectrum of group extension structures. if we denoie by H the homo-
genecus. Galilei group, by T the temporal translation group and by § the
spatial transiztion group, then the Galilei group G may also be written
as a semi-direct product

G {SXTy XpH
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Wlmm p & Hom{H,Aunt(SXT)) denotes the action of i as a gmn‘;ﬁs of

Fofovyy s ﬂ‘f LV T oy $lain mwrdnecatmes arad € ‘t"” Binas, stu v ii iiz‘ﬂc‘}uCL
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In fact £ is given by: v
Pl 1Y {x, 1) v {r.x 4 01,1}

for {v,r) & H; {x,1} € SXT {note that ¥ is iisell a semi-direct product of
the votation group by H, the abelian group of pure imertial boosts). This
extension structure is analogous to that of P in that the spativtempuoral
translations ST > SXT are an invariant subgroup of G and the guotient of
G by the translations is a rotation-inertial boost group. However, as we
have mentioned, the Galilei group has a spectrum of other proup extension
structures. Amongst these is the following, the most interesting group

theoretically:
GxSQ(TXH)

which & 3 non-frivial group extension in that TXH is not a subgroup.
The ohject *¢* measures the deviation of 7XYH from being a subgroup. This
notaticn will be better described in the next soction. The above structure of
the Galilean group, apart from the non-primitive space groups of crystallo-
graphy {Ascher & Janner, 1868}, is porhaps the oniy czample of 2 non
split group extension occurring naturally in physics.

“Recently (Lévy-Leblond, 1965), in an analysis of the Galilei group as
‘non relativistic limit’ of ﬂv& Poincaré group, Lévy-Lebiond ﬂgggg\grpﬁ 2
non-physical kinematical group, the Carroll group, which is another
degenerate cousin of the Ppincaré group. The Carroll group holds more
group theoretic interest than physical, but it has an analogous spectrum of
extension structures to the Galilean group, in whick the formal roles of
space #nd timé are interchanged. One may either write the Carroli group
Css

Cx(SXN)Xp'H
where p’ € Hom (#, Aut{SX7)) is defined by the rule
pPaory: (e r.xttorx

for (v,r) € H, and (x,1} € SXT. It has a non-split structure too, which we

write as:
CxT @ (8Y, H)

Hactingasa group of rotations on §. Another kmematicai groap of slmht
physical interest is the ¢ so-called ‘static’ group § (Lévy—Lebigud & Bac
1968} which has a unique trivial structure

S (SXT)Xp"H
where this time p” € Hom (¥, Aut (SXT?)) is defined by
Py x,t) > (r.xn
Hence the title ‘static’ as the inertial boosts have a trivial action. on S¥7T°

PSS Joe

‘Let us reconsider these three kinematical groups together. If we Took



EINEMATICAYL GROLIPE AS GROUP EYTENSIOYNS I

at thelr semi-direct product {orms, we notice that they differ only in the
-astions of I 8s a group of avtomorphisms of 3T

o135y +> (Fax -+ o, 1 {(Galilei)
Per): (5 e x,t+orx)  (Carroli)
o) () > {r.x, 1) (Static)

Up to rotations p leaves T “invariant’, p’ Jeaves § ‘invariant’ and p° leaves
both ‘invariant’. We shall formally call any group extension a kinematical
group iF it iy a split extension of H by SX7 in which K acts inferpally in
the usual way on § and T (that is trivially on Tand as a group of rotations
in S} and investigate the consequences. In ihe course of this investigation,
we shali show how the structures of the Galilel type {which we call 7~
kinematical groups} and of the Carroll typs {which we cal! S-kmematical
groups) induce non-eqguivelom non-split extension structures and we shall,
attempt to compute ¢/l S and all T-kinematical groups, solving the problem
in principle, if perhaps not in fact. We shall alse avplain exacily what we
mean by § or T-kinematical groups below,

Mathematical Apparatus

A group @ is said to operaie on 2 picep 4 (Scott, 1964) if there is an
action of G 2s 2 group of automorphisms of 4, that is, a homomorphism
p € Hom {&, Aut (). If this is the case we ¢all £ a G-group. (Note that
any group is a G-group since G gan act trivially on any group) If 4, and
A, are G-groups, 2 G-homomorphism from A4; into 4, is 2 homomorphism
feHom{d,, 4;) such that f{g.2)=g.(f{&)) for any g6, zed. We
shall write p{g)}{«) In the form g.x when no confusion can arise. If fis 2
G-homomorphism we shall write fe Homg{d,,4:). If R is a ripg, an
abelian group 4 is called ag R-module if there is a function k1 RXA — 4;
k:fro) v» rox such that if 1, 0 are the identities of R, L.g=g; O0.a=0
and

7 (rirsyoa=ry.{r:.0), ra o ~raytr.
and

ri+r}ya=riatr.zx

Now if 4 is an abelian G-group it is an R-module for R the group-ring
{Maclane, 1963} of G. Thus we call an abelian G-group a G-module.

Suppose that K, an abelian group is a Q-module for some group O,

- defined as ¢uch via anaction p e Hom (O, Aut{K)). Let C{(Q, &) denote

all functions from @" to K for n= 1, and for n=0, let CY 0, K} =K

€,M0,K) are all Q-modules in the obvious way. Thers is a complex

Cp(0, K) whose sith compenents are the £,XQ,K) for n>{ and trivial
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* modules for # <0 The coboundary homemorphisms 5 ¢ Hom (C’;{ 0.5,
CHHO K sredefined by M= Bforn < Oand forn s 0

FG - Gued = O G 9+ 40 S 0
+ 2 CD TG diies - Gena)

One can show that 5 o §°=0. The groups Z,5(Q, X} and B,(Q,K) are
defined 16 be respectively Xer(3") and Im{é™'); becauss BHO.K) <
VA “(Q.!{'} we may define 2 group H,%(0. XY as ZF(Q,K)/B,(Q.K). The
group 2,70, K is calied the group of acocycles, B,N(Q, £ the group of
ncoboundaries and H,N{Q,K) the n-dimensional cohomology of 0 in £
K zeZ0.K) is an n-cocycle of @ in & we shall denote |z| for the
‘cohomology class of 2" in H.5{ @, X). Suppose X is an Rmedule for some
ring Rand that foralig € G, plg}r £ = r plg &L then (because T NO. KD
are also R—deules), the ceboundary homomorphisms are P-humcmor-
phisms Z,7(0, K}, B,(Q, K) are R-modules and thus so are AN, K.

A group F is said to be a group extension of a group ¢ by a group K
iff E fits in a short exact sequence:

Thisdiagram is shorthand for fisa monomorphism 4} disan ..pmmmhxsm
{5} and Ker{g) = Im()}. Ccnseaumﬂy itk <K E{{K)=0. F i

said to “split’ on the right iff ‘ihf}‘b is a bomomorphism je Hom{Q, £}
such that ¢ o j =1, in which case j iz 2 monomorphism. We shall call an
-extension of this-type a Sc’ﬁahdir%{ product. An estension 1s called split
¢n the left iff there is an epimorphism je Hom{Z, X) such that jo /=1,
A doubly spiit extension is called a direct product. If E is a semi-direct
product of @ by K, the inner automorphisms of F through @ induce an
action-of O on X as a group of automorphisins, that is, a homomwp‘nsm
ge Ham(o Aut{K)) such that, because F=i(K}.j{@), the group law
on Eis given by, (g{ed (k) =4q. k\

({k ) jlg P (k) jlg2)y = (itk 9, .42} j(9:492))

Conversely, given 7 € Hom(Q, Aut(K)) we may construct a group on the
set X X0 with multiplication table

(ky,q:). (ko qz) = (k1 gy k2,91 42)

and this group is a semi-direct product of @by &L Now that the semi-direct
product with trivial action is the direct product. If £ is a semi-direct product
of 9 by Kand p e Hom {0, Aut(K)) defines K as a U-group we shall denote
the group by

E=KX,0
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The asual notation KxQ will be used for the direct produce. Two group

¥
sxtensions are said 1o be soaivalent ﬁfghggg; igEn ig-_jmgg?igﬂgm thr FovrE

VIS Gk S8 AR mAhe g b wida

such that the diagram below commutes
o T\-\ 4
/ ’¢ \\Q
F V i ' ,s'r

Suppose now that K is an abelian group and that E is a group extension of
Oby K Hrisany section of ¢ over (Fthereisan actionp € Hom (@, 4t (X ))
of @ en X 2nrd a function w, € C, 2( 0O, X) such that the group law on Eis

(k) s{g (i 2}55:5}’2}} == f{fy g . K+ Wilgy, 425G 92)
where in fact w, is defined by
i(wlg,q2)) = s(g)s (g2) (5(gyq22)"

Now althongh the action p of @ on X is independent of the choice of
section 5 {becausz K is abelian) the above group law does depend on 5
through w, whick is » cdcycie of

ZHO,K)
which is a requirement of associativity in E. If we make a new choice 5

of section of ¢ aver O, the cocycles w,and w,. are related by w,, = w, + 6(f),
wuﬁl'ﬁfE C I(Q,.&:) is defined by:

if (@) =5"@)s(g)™*

Thus a different extension is cbtained. However, the two extensions are
equivalent in that the isomorphism

I:E—FE
Fri(kys(g)y v ilk +1(g))s'(q)

makes the aforementioned diagram commute. If £ and E’ are equivalent
extensions of @ by K the cocycles which determine the group multiplication
tables of E and £’ are cohomologous. For if ¢: E~ E’ is an isomorphism
realising the equivalence

6(5(g:)5(g2)) = 5(5{q.)) 0(5(q2)) = 5 (G1)5"(42)
where 5* is a section of ¢’ over @ and so

(i G, G20 5 (g Gy = ' e (qr 5D 5
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rmpiymg w,,(z;,, 3) = Wy (ql,qz} since i’ = oo iand 5' is 2 manemmphrsm.
But Wy differs from ihe Gr‘gm‘u facior byﬁimn of £ uy & @uuvbuua{y,
hence w, must be cohomologous to the original. We may therefore define
a function

W EXty (Q,K} - sz(Qs ‘K)

¥w: fE‘ > lw,l

Tor 2ny section of ¢ over Q.

Ext, (0, K) is the set of equivalence classes |E| of extensions of 0 by K.
“That wis a bijection is shown by noting that givenatwococycle £ € Z, (@, K)
the group on KXQ with multiplication table

{k5.9:). (hags) = (ky + g,k + E(90,92),.9162)

E,, is a group extension of & by Yarﬁ that i f'w =¥} thee 1Bl = Bl
The inverse to w is thus E: m +> | E,| Tor any & & Z,%((, K}. Thus we see
that there is a 1-1 correspondence Ext, (0, X} = Z, "_f? XY Thiz corres-
pondence can be extended-to a group isomorphism using the Baer
product{Maclane, 1963) of group extensions. For any cocycle & EZ- EEN Y
we shall denots the group extension determined up to equivalence by &as

X®,0

Suppose that E is a split extension of { by an abelian group K whichisa
trivial G~-module 2nd that @ and X are G-groups from some group G,
defined as such via

PreRHom(G,Aunt{K)),  poe Hom (G, Aut{¢)

E will be called 3 G-enlargement (Eilenberg, 15949 of O by Eiff () Fis a
" G-group via pc€ Hom(G,Aut(E), (il d: E-» Q is in HomG(E‘ Q} and
{iii) i: K < Eis in Homg (K, E). Note that the splitting Momomorphism of
QO into E is not necessarily supposed to be a G-homomeorphism. Two
G-enlargementis of @ by K are called G-equivalent iff their split extensions
are equivalent througu a (-isomorphism. Essentiaily then, a G-enlargement
E of § by K is the giving of an action Pyof G in KXQ which extends the
actions of G in K and Q. Note aiso ihat the split extension of 0 ’*y Kare
in correspondence with the family of splitting Homam orphisms of @ info
KXQ. The ‘factoring out’ of this arbitrariness is attainad by the notion of
G-equivalence as we shall see in the proof of the following proposition.

Prepesition (1) (Eilenberg, 1949): If Ext;(Q, K) is the set of G-equivalence
ciasses of G-enlargements of Q by X, thereisa 1-1 cor:e:,pozda e

E"*tﬁ (Q K) H, I(Gr Hc}m (Q’ m\

The acticn of G in Hom(Q,X). bemg defired by P(2)(f)=Px(g)ofo
Py(g™?) for any fe Hom((Q,K), g€ G-
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P“aoj' Suppcsct: that Eisa (rﬁniargtmenf of O by K defined as w;r%i wia

&6 action Igt:‘ rzmuiu,nuuay izt j bz & muuﬁmmpﬁ:u secticn of
¢:E-» Q over (G, noi newessarily a_G-homomorphism. Define the

obstruction wi= to jbeing a G-hemsmoxphxsm by
WF & {:E:{G‘t ﬁ{Qs X}}

H )@ =5. Gl ) jg)?
‘We shall show that wiz € Z}(G, Hom (0, X))
1) wis(ge Hom(Q,K) foranyge & Forgiveng,. g, @
Wi ga)) =g (J & .a19) ilg32)°
=g.j(g .q)e. j(g™ g} il Jig )
=g. j{g7.q) i(wi=(g)(g.)} Flgd™’
= i(wiE(2) (g.)) i(wi=(g){(q.))
= i(wis(g){g) + wiE(g) (2
Thus because 7 is 2 monomorphism we obtain
wigHd 325 — w752 (g,) + wiE(2) (g2)
) wireZ MG, Hom{(Q,K)). Forif 5,, 2,6 G, g€ @ we have
B C-SICHES O PO 1S5 A RN ) FICO R
=g1.(22. j{g7* (gt o i .oy D (g, J2T ) gy ™
= gy i(wiH(g ) (g7" . ) iwiE(g N (3))
, =i(gy wiH(g) (g7t -0 -+ wix(g ) (g}
Therefore, we obtain the required result:-
wir(g; g2) = wie(g,) + p(g) (w25(2:))

Suppose we make a new choice of section j* of over O, keeping py fixed.
Then because '(q) = i(¥(g)) j{g) for ¥ e Hom{, }u we obtain wif=
wit 4 5(f) and hence wPEs }w§5= for any section j depeads only on pg.
Now suppose E and E’ are equxvaxent G—Cﬂiﬁ!‘ié‘"’ ants of O by K. Then
E and E” are equivalent expansions of O by K and the isomorphism
6:ExE" is a G-isomorphism. If j, j' are sections of ¢, ¢ we obtain.
o i(k) j{g) > i(k) j'(g) is a G-isomorphism and hence

o(pe(g) UleN) = oG (wi=( ) (@) j(z.9))
=i{wi(g} g e(jiz.9)
zi(ﬁ”(z)xq}); (g.9)
= pe{g) (g3}
= l(»t"'(g){q}}.f {g-a)

This implies wje = uj’,! and hence wPz = w® and thus that the mapping
wil|E| ~ w"% is a function. It is a bijection because the mapping from

and
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- fx”‘p{G,H{}mf‘Q,K))ut i
en E¥VQObve (& Y o (o
bl A S AR St & I L¥-3

is an inverse function, That E is

Jw} = 1w} = £, = |Eo].

Rermrk: One may define a composition of G-enlargements and show
that using this composition, the bijection of proposition (I} is an iso-
~morphism of abelian groups. We do not use this method but equivalently
define an abelian group structure in Ext {0, K} by ‘pushing back’ the
addition in H MG, Hom(Q, X)). The trivial enlargement is the identity for
this addition in Ext {0, 5.

1B+ Byl = [Eugw!  forw, w' € ZHG. Hom {0, K}

If X is an R-module for a ring R and p{g){r. !z‘;‘ =r.plgikyforalire B,
reG, ke K, 4G Hom{Q.K)) is an R-modulz and hence by pushing
back the R-module structurs to Exig{Q, &} so s this group.

w] > |E, | where £, is the G-enlargement defined
k4 w{g¥ghs.g¥forany weZ (G, Homa (0, K)
-5
Ty

function follows from the assertion

r B =18
Thus when R is a field, Extg(Q. K) is a linear space over X

Remark: If Eis a G-enlargement of Q by K, there is a semi-direct product
EX, G of G oy £¥Q. Let us call T(pg,py) the trivial case in which
R @) = i(pal51 (1) J(pa() @), €. T(Px,po) = Eo XpsG, where 0
is the zero cocyele of Z, MG, Hom (0, K)). We then call any semi-direci
product EX, G of KXQ by G when E is 5 G-enlargement of O by K a
Geextension of T{pg, pp) and call any two G-extensions of Tpg, p,) equiva-
fent iff they are equivalent as group extensions of & by XX

Propositim {2): There is a -1 correspondence between equivalence
classes of G-extensions of T{(pg.p,) and the group H,YG, Hom(Q, K.

Proof: There is 2 one to one correspondence between equivalence classes
of G-enlargements of @ by X and equivalence classes of Geextensions of
T(pxg,po). We demonstrate that the mapping f 1 E v EXpy G is 3 tijective
function. '

(1) fis a function, for if [E|=|E’|, |EXp G| = 'E' Xp. G.. For if
|E} = |E'|, E and E’ are equivalent group extensicns of ¢ by K and the
isomorphism realising this equivalence is a G-homomarphism. Suppose
that this is ¢: £Ex E’ and define g: EXpeG-> £ Xpo G by y:6,2) >
{ole). gl foree E, g e G. We claim that y is a group isomorphism and that
the diagram below commutes

- f
EMEXPEG”MP?———# G

o

- . 1
E ?"“‘*T;—-—+ EXpeG ——-;;7—-—9- G
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where i, I and §, ¢’ are the homomorphisms
it lee)ecEorE, . ¢ (e.g)rrp ecEorE ge G
7 i5 a group homomorphism. For we have

1l(es, 2:) (62, 820) = 36, Pel8) (B2)s g1 82)

‘ = {ole; p(£}{&:3). £: 22}
= (o(z) o{pl2) (&2)), 21 22)
= {o(e; ) o (8} {v(e), 81 22
= {o{er). 213 (o(E2), 52
= yes 81} 122, 2)

Similarly : {e,8) > (a“‘(a}, gifors ¢ £, g = G is 2 group homomorphism
and it istheinverse to x, 50 yis a group isomorphism. The disgram obvicusly
smrautes so that |EX,, G| = |E" X, G| and [is a functicn.
@ The inverse to fis s defined as the mapping f where

J:|(KX0) X, G| v |E}|

where pp=p for a G-extension of T(px, Po)- f is 2 function for, if the

G-extensions (KXO)X,G, (KX0jx, G are equnaient |E) = E,l.
- Because (KXY X, G is equivalent as & group extension o { KXQ)X,,G

there is a group somorphism o1 (RXG) X, & ::(KXQ} X, G. Hencs

o(p(g) (&) = o (e (g¥ N = s(J (N el 1 = p'(g) &

and ¢ induces a G-isomorphism E > E' implying |E,| = |El. Tt is clear
that fis the inverse to f and hence fis a bilection.

Remark: We extend fto an isomorphism of 2belian groups by pushing
the group structure in Ext;{Q,X) into the se: of equivalence clusses Qf
G-extensions of T{py, po):

[(EXQ) X,G| + |(KX0) X, G| = (KXQ) X,- G

where p” is the action of G on the G-enlargement E, + E,.. If Kis an R-
module and pC.By=r.p(g)k) forall g= G, re R, ke X, the set of
equivalence classes of G-extensions of T{(pg,pg) is an R-module with zero
element T(pg.po)- Let us use the symbol Ext{T{pg,po)) for this sct of
equivalence classes of G-extensions of T{px,po)-

Corollary: There is an R-module isomorphism {R = Z in the trivial case)
HP (Gs Hom (Q K)_\ ~ Ext (T@K’PQ)}

Proof: Combine propositions (1) and {2).

Remark: We now show how the semi-direct product structures of G-
extensions of T{pg, pg) induce non-split exiensicas of OXpe T by &
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Propositien {3): There & 2 homomorphism
7 H,4G, Hom (0, K)) - H3(0Xpo 6, K)
Where, for (7,£) € QXp, G, Flg.8) = pxlg)-
Proof : Define §: Z NG, Hom (0. X)) = Z3{(QXpG, X)

?‘{(qjﬁ gi}-‘s (*?z; gz)) = 5{{51} (gl 1q2}
for
@0e0X,,6 ad ceZ,G,Hom(Q.K

That §, € 23, {0 Xpo G, K) foliows from the fact that

FFI (G, £:). 602,220,805, 83) = 1. 7.02. 82), (3. 830}

= Pellg: 21 -92-£1 22 (3. 830)
+ 58150922203, 82 820}
= Fel(gs: 80, (g2, 823}

=g,.0(8:) (g2-93) — a(g, gz_.) (8122-93)
+0(2){8:-{9:82.9:)) — o(2:) (81 .92)

=81-6(8) (82-42) — 81 .0(g:) g7 - 2: £2)
— 6881 82-95) + (81 (21-92)
+ 0(g1} (81 22-953— vl 2 (% 92}

Sup_p'DSﬁ that 5y, 0, € Z,(G, Hom{Q, X)), we show that |g,] = fﬂzf implies
[Fa,| = [Fa,]- For, we have

)"q((?ﬁ £:1(9.-80) — )—’aé(('h :80:(92:82)) = 642 (gs-92) ~ 72(g:) (21 .42

=8(Y) (g (2, -92)
for ¥ € Hom (Q, K). i
Now () (20)(81-92) = &1 . ¥(gy = ¥(g,.q;). Let us define 1 §XpoG —
Kby(g,g)= ?ff"@) forge 0, g<= G. Then
(0 ((91:81):(92:82)) = 81 X(02.92) — 1(91 81 92,81 82) + #(91, 81)
=g,.¥(g2) ~ ¥(g,) — ¥(g:-92) + ¥lg)
7 = g:.9(g2) — ¥(g1:95) .
Therefore 7, — %,, = 8(x) or |7, | = |7,,| and y defined by y: jo| > |3,] is
a function from H'p(G,Hom{(,K)) intoc H (. (0XpoG,K)y is in fact a
- group homomorphism. For 7 is ‘
To,40,(61, 810 (92, 820) = 65 + 02(81)(21-92) ,
=(0,(g:) + 02(g2)) (2::9))
=64(g:)(8:-£2) + 62(8:}(8:-92)
= o, + 70,1, 81, (22 £2))



ERENATICAL GROUPS AS GROUP EYTENSIONS 174

Corollary: The group homomorphiste ¥ from HHG, Hom(Q, X)) 0
B (0Xp,G. X} induces z group homomorphism from the group
Ext(T(px) Po)) to the group Fxt& QX};QG K} of group extension classes
of QXp,Ghy K.

Definitions: A T-kinematical group is any H-extension of the Static
group viewed as 2 split extension of A by an Aenlargement of T by S.
An $kinematical group is an H-extension of the Static group viewed as
a split extension of an ¥ eplargement of § by 7. Thus the Galilei group
ir 8 7T-kinematical group and the Carroll group an S-kinematical group.

Theover (4): There is 2n R-meduke isomorphism between the B-moduis
H}(H,Hem(T,5)) and the R-module of equivalence classes of T-kine-
watical groups and an B-isomorphism between the R-moduvle H}.(H,
Hom(S,7}) aod the B-module of equivalence classes of S-kinematical
groups. ‘

Proof: That H'(H,Hom(7,S)) is 2n R-module Tollows from the faci
that S is an R-module and H acts R-linearly an S (as a rotation group).
Similarly HL.(H,Hom(S,T)) is an R-module because T R and H acts
wwivially on 77 The next foilows from proposition {2).

Theorem {53 There is 2n R-homomorphism betwesn the R-module of
equuivalence classes. of Trldnematical gz@&m and ihe Bmodule of eqniva.
lence classes of extensions of TX # by S, and an R-homowmorphism between
the R-module of equivalence classes of S-kinemauvcal groups and the
R-module of equivalence classes of central extensions of SXp, H by I,

Proof: Use proposition (3) and its corollary 11.
Lonjecture {1): That the linear space of equivalence classes of T-kine~
matical groups is I-dimensional ?

Proof: HMH ,Hom(7T,S))x B? Suppose o € Z,}{H,Hom(7,8)} then
for (v,rye H,teT
o(o,r) (1 + 1) = oo, 1) () + o0, 13 (1)
(v + 1103, 131 () = 6(v, 1) () + 1y 6(e5, 1) (1)
These identities result in the following
(0,7} (1) = al{v; &) (0, r}}{0)
=a{p,e)(t) +(0,r) (1}
=o(0,r) .0, (1)
=50, r) () +r.o(rv,8(t)
Consider the fum,tion VA 3(3 R} — Hom (T 5);
lr) (B =o(0,r} () e ZXHO(3,R), ,Hom (T, S)
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For . .

Yt ) = P () + 1) ()
But 7

ZHO(3, R), Hom (T, 8)) = B,}(0(3, R), Hom (T, 5))

For # P is the inversion x +» —x, COG,R) = Z,(P) and one can easily
show ¥ (r) =480 P ) ) for any I-cocycle . Such a coboundary vields a
gobovndary of Z,}{H, Hom {7, 5}) 50 we may eguate ¥i0,r){#) =0 for ali
re0(3,R), & 7. Thus we are left with

#(p, r) (1) = (o, £} (1) = y{v){1)
and the function y : Hy — Hom {7, 5 sauisfies
W)y =rpw}(t)  and  xlm 4 o) = ylo) + ;)

The first must imply that y{p) (1) = 1,{t) .v for 1, : R — R. For we note that
J(7A0) = Ho) For 7,(v) = 3(v) (1) and thus 7,(v) and v are colinsar {whers §
isthe isotvopy group in 0(3, B)). 4, is 2 Z-endomorphism of R, We conjecture
2, iz I facy R linear which implies A,{f)=t1{)=16* for ¢*c R If
this is true {g] > 6% will he 2n R-isomorphism. (That it is 2 function
follows from the gbove.) Ity fuverse s defined by o +> o] where forx e R,
6,0, £} (1) = art.

Corofizey: If the above conjecture is true the real Hngar space of egui-
valence classes of T-kinematical groups is generated by the eguivalence
class of the Galilei group.

Proof: The Galilei group is the T-kinematical group cosresponding to

=] dbove.

Conjecture {2: That the linear space of equivalende classes of S-kine-
matical groups is I-dimensional over R?

Proof: If ¢ € ZL(H , Hom (5, T)), we must require that
&0, r) (x +x) =l ) x )+ @{U r3x;)
Glloy + g0 1) = QoL 1 () + ¢loz, ) %)
We obtain then the foliowing identities

$(e,r) = B((r, )0, 7)) = 6(2,7) () = (0, &) (x) + $(0,7) (x)

Ho.r) = (O,r)r ' v,8)) = dlear) (x) = GO 1) X) + (-~ 1, €) (r* . x)
C IR HO,r) = pfr), we hax;e - h
. ueZX0,", R),Hom (S, 7)) = B n{0(3, R), Hom (S, T)}

which induces a boundary of the group BL(H, Hom (S, 7)) and we may thus
equate (0,7) = 0 and obtain ¢{v,r}(x) = plv) {x) where o(t) (x) = ¢{v,€)(x)
and p satisfies p(r.v}(r.x) = p{g)(x) for aay rotation r. with

-peHom (H,, Hom (S, T w Hom {H, ', 5, 7.
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Thus p must be some Z-bilipear function B* @, B* — R, Which is rofation
invariant. We comiecture that then p(y,r) = o dele} where {|} is the scalar
_product in R® and «, € R. If this is true [¢| 1> a, is a bijection

H p'(8, How (5, 7)) — R

for the correspondence is 2 function 2s we saw above and has an ipverse
@ 5 i, 7here ¢,{p, 7} 53 = &lp|x).

Coroffary: ¥ the above conjeciure it true then the real linear space of
equivalence classes of S-kinematicsl groups is generated by the gquivalence
class of the Carroll group.

Proo/: The Carroll group corresponds 1o ¢,.
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