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Abstract 

t~ta~kmi kinerna'tie~t groups are ana~y~ fi'om the viewpoint of the cohomology theory 
~ f f a ~ c t  groups ~/z~g grow ~ e ~ e ~ a  a~d C-<:~k~r~ment theoD-+ 

Introduction 

Th~ pu~os~  of  th;.~ ardc!c is t e d  iscn~s ~h e ki~cmat;~M _~o~,p~ of  ~hVd ~-r 
f rom the poir, t ,,r ,,; . . . . .  f',,-,,~,,~ ~ ; ,, . .  group extension may . . . .  . . . . . .  ~ - -~v  +xtens.o.. theory. 
be loosely described ~ a grou~p which is obtained by wea~qng together 
two other groups. Most  o f  the kinematScN groups of" physics a r~5 ,  J~ct 
group extensions. The best knov, m and most thoroughly investigated of 
these is the Po,.'ncar6 group of  speciat retativi~. The Poincar_; group is an 
example of  the ?most simple kind, semi-direr  product. Its structure 
may  be symbolised by (Michel, 1967) 

P = STX.nL 

where ST  is the spatiotemporat translation ~,~-,~'~-,, L the Lorentz group 
aud the symbol ',r? denotes the naturai action of  L as a group of  auto- 
morphJsms of ST. The notation in bri,~,f means tha~ P = ST.L,  S T  < P, 
L < P ,  P / S F = L ,  STIq. L = I  and for t s S T ,  . ~ L ;  ^ t : , -~=,~ . t  and 
s p ~ f i e s  P completely, in terms of  S T  and L P is said to be a semi-direct 
product  o f  L by ST. 

The Galilei group of  Newtonian relativity (L6vy-Leb~o r:d, t 97 l ; Whiston, 
1972) has a "richer stracture than the Poincar& groap~ i~ that it has a 
spectrum of  group extension structures. I f  we deno;e by H "the homo- 
geneous Galilei group, by T the temporal translation group and by S the 
spatial translation group, . then the Gatilei group G may also be written 
as a semi-direct product 

a ~ (SXT)  X:h"  
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p~Hom(/ / ,Am(SXT))  denotes the actio1~ of  H as a group of 
~.m, omo~hL,~,~ of S ~ T  m this extension and "X' dc-a(~es direcl p r ~ u c L  
In fact p i~ given by: 

~,r) : (x, t)  ~ (r .x  + ~ ,  t) 

for (v , r )e  H;  (x,r $XT (note that H is itself a semi-dke~t product of 
the rotation group by Ho the abelian group oflvure inertial boosts). This 
extension structrrre is analogous ~o that oF P ~u float tlae spaliotemporal 
translations ST'~ SXT are an invariant subgroup of 17 and t ~  quotient of 
17 by the translations is a rotatiorMnertial boost group. However, as we 
have mentioned, the Gaiilei group has a s p e ~ m  ofo~er  grot~p e.~ension 
structures. Amongst these is the following, the most interesti~,.g group 
theeretic~tly: 

a ~ s | (TXH) 

wtfiet~ ~ a non~trhaM ~t, roup extension in that TXH is not a subgroup. 
The object "~' measures ~ e  deviation c~f TZH from being a subgroup. This 
notatiqn will be bett~ described in the ne~t :<~c6on. The above structure of 
the Galilear~ gro~Jp, apart from ~hr nen-prh~tivc ~pace groups of cl3"stallo- 
graphy (Ascher & 2anner, 196g), is ~crhap~ Lhc c,~ily example of a non- 
. l i t  groupex'~ension occurring naturally in physics. 

-tlex:enfly (l_A~-Leblond, !965), in an anaiysis of~the GaliM group a~ a 
"non re|ativL~tie limit' of the Poinear6 groiap: IAvy-.Lebtom5 discovered a 
non-physical kinematical group, the Carroll group, which is another 
degenerate cousin of the Poh~car6 group. The Carro]I group holds more 
group theoretic interest than phys~ca|, bm ix has an analogou~ sr~cirum of 
extension structures to the G-alitean greap, in w~ch the formal roles of 
space and t.im6 are interchanged. One'may either write the Carroli group 
Cos 

C ~ (SXT) Xp" H 

where p' ~ H0m~(/Y,-Aut(SXT)) is defined byott~e rule 

p'(v,r)  : (x ,O  ~ ( r .x , t  + ~,.r.x) 

for (v,r) ~ I4, and (x,t) ~ SXT. It has a non-split structure too, wt~ich we 
write as: 

H acting as a group of rotations on S. Another kinematical group of slight 
physical interest is the so-called "static' group ,.~ (L6vy-Leblond & Bacr~; 
:I968) which has a unique trivia1 structure 

where tb'~s time p"e  Horn (1I, Ant (SXT)) is defined by 

?%r):(x,t) ~ ( r . x , t )  

Hence the title 'static" as the ine:AaI boosts have a ~Nv/aI action. On S_VI'. 
Le t  ~s reconsider "~ . . . .  three '-: -- '- '-~' . ,~c~c  ~r~emaut~ gr,-mps together, i f  we i0ok 



~heh- semi-direct product form.~, we nogce tb~  they d~ffer only ~n tl~e 
a~ik~tts of-~' t~ a o -" e ~.- _ e --r.. 

Nv, r ) :  (x, ~) r ( r .x  + ~t, ~) (Galitei) 

p % r )  : ( x , 0  ~(rx.t+~,.r.x) (~o~)  
F(",r)  : (x, t) ~ (r~.. t) (Static) 

IJ1) m rotations p leaves T ' iavar iant ' ,  p'  ~eaves S 'invarianf' and p" leaves 
lx~lb 'i~-wariantL We shall formally call any ~ o u p  extension a kinematical 
grm~p i f  ~t is a ,split ex~ensio~ of  f t  by SXT in which H acts internally in 
the usual way o n S  and T(that  is tfi~dally on Tand  a~ a group of  rotations 
i~ S) and i n v ~ g a t e  the cortse/quenc~. In the course of  this iaves~igation, 
we: shai! show how the stm~ctures of the GMiM type (which we call T- 
kinematical groups) and of  fi~c ~,.:~11 t ) ~  (whgch we m!l S-kme~.a~J.cz~ 
groups) induce n o n ~ m v a ~ m  nt~n-spiit exten;ion s~tructures and we shall  
a t~mpt  t o compute all S and all T-kinerr,.at~c~! grnup~% sotving the problem 
in principle, if perhaps not in Nct. We shall also e._,cpIain ~xactty what we 
mean by S or T-kinematical groups below. 

Mathematical Apparatus 

A group G i~ ~aid to r on a ~ . ~ p  4 (Scott, !964) if there is an 
a ~ o n  of  G ~ a group of  automorphisms of A, t ~ t  {s, a homomorphism 
p ~  Hom(G, Aut(A)) .  I f  lhis is the case we c~ll A a CC~-g~oup. (Note th.at 
any group is a G-group sinee G can act trivialiy on any ~-o~p ) If  At and 
A2 are G-groups, a G-homomorphJsm from Ai into A2 ix a hemomorphism 
f e H o m ( A ~ , A z )  suct~ that f (g . ,~ : ) - -g . ( f ( e ) )  for any g ~ G ,  e e A .  We  

I I  ~ J s a shall write p(g)(~) in the form g.:~ when rm confl,sion can arise, e f -  
G-horaomor?hism we shall write fc-HomG(A~,A,),  i f  R is a ring~ an 
abelian group A is cNled an R-module if there is a run , ion  k : RXA -+ A ; 

identme~ R, I o ~ = ~ ;  0.~ = 0  k :  (r,~) ~ r.:~ stlch that if  I, 0 are the " "'" ~ of 
and 

(qrz) ,  a = rx.(t?.oO, r .(et  + =z) =~ r,,'_q + r.e2 

and 

Now i f  A is an abetian G-group it is an R-module for R the'group-ring 
~[actane,  1963) of  G. Thus we call an a~zlian G-group a'G-module. 

Suppose that K.~ an abeIian group is a Q-moduIe for some gr0flp Q, 
def ined  as such. via an-action p e Hom(Q, Aut(K)). Let C~(Q,K)  denote 

all fimctions from Q" to  K for n > I, and for n ~ 0, Iet C~~ K ) =  K; 
C~(Q~_K) are all Q-modules in the obvious way. There is a compie• 
C ~ Q , R ]  whose.~Rh components are ~ C~(Q,K)  for n > 0 and trivial 
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~, lodu~ f ~  n < R  The e,bo'a~dary homomorphisms b* ~ Ha'a',(C,~(Q, K), 

~t f ){ t / , . . .q ,~=)  == (--1) "+* f ( q : . . ,  q,) + qa .ffq~.-q~) 
t i  

+ E (qYY(q, .... q,q,~, . , .q.+3 

One can ,~how that b ~+~ o 6"---- 0. Tb~ groups Zp'(Q,K) av.d B~"(Q,K) ax~ 
defined 1~ be resty,~c~b:ety Ker(a')  and Im(a~q); because B~(Q, IO< 
Z~'(Q, ~ we may define a group Hz:(Q. AT} as Z~"(Q, t;3,:Bfl(Q, K). The 
gm_wp Zfl(Q, K) is called the group of meoe-ycles, B~"(Q, L3 *he gro,ap of 
n-coboundaries and H-:(Q,K)the r.~di~ension~ cohomo:ogy o f  Q in K. 
I~ ~ EZv"(Q,K ) is an ~e.oeycle of Q in K we shall denote lz] for the 
"eohomology ~ s  ofz" in. Hfl(Q,K). Sup~se  Kis  a.,: R~med:de for some 
ring R and that for all q e Q,p(q){r i,-} = r,.~:}@). :h--~. (rx-'ca::se C~"(Q, K} 
are also R-modules), the ceboundary homomorphisms a!x: R-homomor- 
phisms Zfl(Q, K), Bfl(Q, K) are R-modules and thus so are H:'(Q, L3. 

A group E is said to be a group extension of  a group Q by a group A', 
l i f E  fits in a short exact sequence: 

Th:sdiagram is sh~thand foriisamonomorphism(>-+~ (~isaz epi::,~rphism 
(--~) and Ker(~b)=ImO). Censequently i :K  <E,  Eli(K)= Q. E {~ 
.said to "sp:iC o~ the right iff ~herc is a bomomoTphism ./~. Hom(Q~E) 
such that :5 o j  = ~a, in which casej  is a monomorp:fisrn. We shall cal! an 
"extension" o f  this. type a semi-direct product. An extension is called spfi.~ 
on the left iffthere is an epimorphismje  Hom(E,K) such :hat ] o i =  ~ .  
A doubly split extens%n is called a dkect pr:~d,ac*. I f  E is a semi-dire~ 
product of  Q by K, the'inner automorphisms of E through Q induce at: 
action.of Q on--K as a group of automorphisms, that is, a homomorphism 
g ~ Hom(Q, Aut(K)) ~uch that, because E =  RK).j(Q), the group law 
on E is given by, (g(e)(k) -q .k)  

(i(:,::) j(q,)) (i(k) j(qg) = (i(lq q, .k:) j(q, q2)) 

Conversely, given iv e Horn(Q, Aut(K)) we may construct a group on the 
set KXQ with multiplication table 

(k,,q~).(k2,q2) = (/": qz ,k>q, q2) 

and this ~PUp iS a semA~irect product of  Qby  K. Note that the semi-direct 
product with trMaI action is the direct product. I rE  is a semi-direr product 
of  Q by K a n d p  ~ Hom(Q, Aut(IQ) defines Kas  a Q-group we shall denote 
the group b y  

T~ = KX,, Q 



The astral notation _ ~ Q  wi]! be t~sed for the db-ect produc~. Two group 

K L an abeEau group and that E iS a group extension of Snppose now tha~ "'~ 
Qby  K. Ifs  is any se~io~ of@ over Q ~_here is an action p e Horn (Qr, ' ~ t  (~)) 
of Q o:: K and a function w,~ Ce2(Q,K) such that the group law on E is 

where in fact w~ is defined by 

i(w,(qx, q2)) = b (q~) s (q~) (s (qi qz))- 

Nov," a!rzc, ugh the action p o f  Q on K is indeeendent of  tbe cno~ e of  
~ec~ion s ~ a s e  K is abelian) the abcv-e group law does d~-~,end ea  s 
thr.oK~j~ ~ wfi~ch ~ a ~ m c j e  of 

z,  (a,g) 

which ~s a requiremenz of assoda~ivity in s i f  we make a new choice s 
o f  section of ~ over Q, the cocycles ~ a n d  w,, are rela~ed by w~ = w~ + 6 ( f ) ,  
-~ere  f ~ ~.~' ~(.o~:,~ ~'~ ..~ defined by: 

i ( f ( q ) )  = s ' (q)  s (q)  -~ 

Thus a different extension is obtained. However, the two extensiotts-are 
equivalent in that the isomorphism 

l : g  -+ E '  

t :  i ( k ) s fq )  ~ i (k  + f ( q ) ) s ' ( q )  

makes the aforemene~oned diagram commute, i f  E and E'  are equivalent 
extensions of Q bY K the cocycles which determine ~he group multip1~cation 
tables of E and E '  are cohomologous. For if ~:  E ~ E '  is an isomo~hism 
realising the equivalence 

a(s(q~) s(q~)) -- ~r(stqx)) a(s(q2)) = s (q~ s (q2) 

where s-' is a section of ~'  over Q and so 

~ . e . - r . . .  r -  _ ~ x  _ ~ r _ - _  ". - -*~t'.. ~ '_  _ x'~ _ r ~ ' _  _ x 
1~, L w ~ t ~ Z ,  ff211 ~ t ~ / t  * / 2 )  = ' k W ~ ' k ~ / l ,  t / z ) ) ' ~ ,  k~.t ~'z/ 
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implying w,(qi; q~) ~ w,,(ql,q;) since i ~ --= ~r ~ i and i '  is a moncmlorphisra. 
from [h= ['ac~,of SyS{.r "= E . . . .  QIIxe'I '~ ut- ~ u u ~ z u ~ ; y t  o~glrlg.~ oy 

henoe w, must be cohomolog0us to the original We may therefore define 
a. function 

w: E x t ~ ( Q , ~  ~ .  H~2(Q, K) 

. t - - ~ 1  

rot ~ny s~on of r o~-cr 12. 
Ex~(Q,K) bs the sol of equ~,alence classes !E! of extensions or Q by K. 

Tha*~ wis a bijcction is shown by noting that. given a two c~=ycle ~ ~ Z~2( Q, K) 
group on RXQ with multipI~cation table 

Ee, i sagroupextens ione  f Q b y K a n d t h a t f f i ~ i  ~r,: +~2_ ~r" t ,~.~v , 
The invers~ to w is tbus E :  ]~] ~-~ Igel for any ~ e Zo,~(Q~ K). Thus we see 
that there is a 1-1 correspondence '~-" "'~ m ~ ,J ~J n ~ Tb;~ 
pondence can be extende~-~o a group isomo~hism u s ~  the Baer 
prodnct.(Maclane, 1963)of group extensions. For any cocvcle. ~ eZ~2;kQ.K): 
we ~a[~. &_ae~e the group extension determined up to equivalence by ,~ as 

X| O 

~uptx)se t h a t E  is ~. spli/extensio~ ot Q by a.,., e..be~a~ group K which is a 
.tTiviaI_~modute ~nd that: Q a~d K are G-groups from s ~  group G, 
defined as such via 

P . ~  Hom(G.Aut(K)) ,  p ~ e  Hom(G, Aut:  9 ~ ~,g.): 

E will be called a G-enlargement (Eilenk~rg, 1949) of Q by KLff (i) E is 
G-group via pz ~ Hom(a ,  Aut(E)), .(ii) 4 : E ~  Q is in H0m~(E, Q) and 
(ih') i :  K <1 E is in Hom~ (K,E). Note tha~ the splitting homomorphism of 
Q into E is not necessarily supposed to be a G-homomo~hism. Two 
G-enlargements of  Q by K are called G-equivalent iff their split e:.'.tensions 
are equivalent through a G-isomorphism, Essentially then, a G-en[argemem 
E of  Q by K is the gv:mg of  aa action Pz of.G in ,~. Q which extends the 
actions of G in R and Q. Note also that the ~n~-.'~ . . . . .  c, by o v ... . .  x~. ,.~,~n of Q Kare  
in co~espondence with the _family of splitting hemomorphisms of Q into 
KXQ. The "factoring out' of  this arbitrariness is attained by the notion of 
C~cquivalence as we shall see in the proof of  hhe fot!oMng proposition. 

Prope~.qtion (1) (Eilenberg, 1949): k eExt~ (Q, K) is the set of G-equNalence 
classes of  G-enlargements ~-f.. Q by .,, ~" there is a I-:. co~espondence: 

Ext~ ( Q, IO ~= H,'( G, Horn (Q,/2).) 

The action of  G in Hom(Q,~) .  being defined by P.(g)( f )  = P,(g)  o f o  
Pe(g  -'~) for a n y f ~  Horn (Q,K), g ~ G.. 



Proof: Suppose that E is a G-enlargement of Q by K defined as ~ar via 

~ :  E--~ Q over Q, not a ~ : ~ i l y  ~ G-homomorphism. Define ihv 
obm~a~ion wJ'~ to jbe ing  a G-hom0m(yrphism by 

e c : ( ( ; ,  c ( 0 ,  t0)  
arid 

i ( ~ ( g ) ( q  )) = g. (j(g~, .q ))j(q )--i 

(t) ~ ' ( g )  e Hora(Q, K) for a~ay g e G~ For give~ q~. q_~ ~ Q. 

i ( ,~:(g) (q, q~)) = g. U "  F '. q, q~).i(q, q~)-' 
= g.j(g-~.q~)g, j(g-~-q~)j(q:)- '  j(q,)- 

--- g. j ( , ~ ' . q , )  i(w~ ~(g,)(qz)) j(q,)-'  
.---- i(w~'(g) (q~)) i ( ~ ( g )  (q,)) 
= i(~.(g) (q,) + ,ff.(g) (q~)) 

Th~s ~ u ~  i is a monomorphism we obtain 

(2) ~"~Z,*(.G, Hom(Q, iO)o Forffg~., ~ e  G ; q e  Q ~ Z a ~ c  

= g~. (g:zo j ( g l  ~. (g;r%q)) j (gT, .q.~)  (g~- j(gZ~~ j(q)-:) 
= g~.i(w~a~(g:.) (g7 ~.q)) i(~-e(g~) (q)) 

=-~(gT-~'(g~) (~;' .q))  + , f f ' (g3 (~)) 
Therefore, we obtain the. required result: 

wff,(g~ ga) = wff'(gx) + p (g,) (w;'(g.0) 

Suppose we make a new choice of sectiofi j '  of ove~ Q, keepingpe fixed. 
Then because j ' (q)=i(~(q)) j (q)  for g, ~Hom(Q,K),  we obtMn w.~,= 
w~'a+ (5(~) and hence w ~ _  -- lw~i for any ;ection j depends only on Pc. 
Now suppose E and E' are equivalent G-enlargements of Q by K. Then 
E and E" are equivalent expansions of Q by K .and the isomo~hism 
o : E g s  is a G-isomorphism. I f j ,  j '  are section s of 6, r ~e obtain. 
o : i(k)j(q) ~ i(k)j'(q) is a G..isomorph]sm and hence 

a(d~e(g) (.J(q))) a(i(Wfg(g) (q)) j(  go q)) 
i(v~(g) (q)) a(j( g. q)) 

= i(w~g(g)(q))j'(g.q) 

--,Fs a.~2]] 

= i(~,~(g)(q))j'(g~ a) 

This "impli~ ~ T ~"_~'~" and hence w: ~ = w ~" and thus that ~he map?ing 
w f IEI ~-> w~ is a function, it is a ouecuon ~r the mal~p~ng f~om 



II~p(G, Horn ~Q, K)) E:. iw] ~-~- ]/~! whc,*e E~ is ~he G-enlargcmcllt defined 

l,, 'I = I,r 1 .1 = 

Rem.ewk; One may define a compo~itim~, o f  G-enlargements and show 
that  u~ng this eompos~tioa, tbe bijection of  proposition (I) is an iso- 

-mo~h i sm of  abelian groups. We do not use tiffs method but equivalenlIy 
define an nbeliar~ group structure in. Ext~(Q,K) by 'pushing back" the 
addit ion in Hr~(G.Hora(Q,K)). R e  trivia! enlargement is the identify for 
"this addition in Ext~(Q~K)~ 

I f  K is an _R-module for  a ring R and pn(g)(r~ !~) =: r.pz(g)(k) for all r e 1L 
g e G, k e K, I[~(G.Hom(Q.K}) is an R-modu!c and herlce by pushing 
back  the R-module struet~• l~ Ext~(Q. K) so is ~b~ grovp. 

"! ~ ' f  = 

Thus when R is a field, Exto(Q, AO is a linear space ove~ R. 

l~em.ark: l f E i s  a G-enlargement of  Q by K, there is a semi-direct product 
" T EX~zG o f  G ~y .~)'Q. Let us call _ (.P~,Po~ ~he lrivial case in whict; 

p(g) (i(k)j(q)) = i ~ . g )  ('c)) J(Pa(g) (q)), i.e. T(F~,Po) -- Eo Xpz G, wi~ere O 
is lke zero cocycle of  Z~((; ,Hgm (Q,K)). We then cal l  any semi-direct 
~ u c t  EX~gG o f  KXQ by 6 whc~ ~ g~ ~ G-enlargemen~ o f  Q by a a 
G-extension ofT(pr~,po)and call any two (;-extensi~;.~ ~? T(p~.,po)equ~va- 
lem iff they are equivalent as ~ o u p  extensions of  G by KXQ. 

Proposition (2): There is a IM correspondence be tw~n equivalence 
classes o f  G-extensions of  T(p~,pe) and the g ro ,p  tI,~(G, How. (Q~ K))o 

Proof: There is a one to one correspondence between eqMvaIevce classes 
o f  G-enIargements of  Q by K aa'd equivalence clasps of G-ext<~sior~s ~f 
T(p~,pa ). We demonstrate that the mapping f : E .> l i~prG ~s a bijective 
function. 

(1) f is a function, for if ~ ' ' �9 = = :~ ,:~ =<, :.~-,. For  if 
[El = ]E'I, E and E '  are equivalent group ,extensiee: e f  Q by K and the 
isomorphism realising this equivalence is a G-homomo~,pLism. Suppose 
that this is a : ~ =  and def,~e Z E.Kp=G-+I:.'~Yy;,G by ~; (~.g) ~-~ 
(a(e),g) for e ~ E, g ~ G. We claim that Y is a grotlp i~omorphism arm that 
the diagram below commutes 

]g" r EX2~G . . . . .  ~ 



'wh~t  i~- i~-~nO$~ $" are the h o m o m o r p h i ~  

I is a gro~rp homomorphism. For  we have 

z((*~,zO (,=,g~)) =.y(e.,p~(g) (,.~);g, g~) 

= 0 % )  ~,~(~) (~)), g~ g~) 

=: z(*,. g 3  r (~ .  g) 

Similarly ~:  (e,g) ~+ (e-1(s for  ,: ~ E~ g ~ G  is a g r o ~  homomorphhm 
and it is the inverse to ~, so/~ is a group isomo~v~hm~ T_~e d i ~ . - n ,  obvio~.:~y 
~a,~,rautes so that [EX=rG[ = [E' X~gG[ a n d / i s  a function. 

~,~ 'The inverse t o / i s  defined as the mapping/where  

f :  [(KXQ)X~GI ~ IF,,] 

where Pe = P for a G-extem~aon c f  T(.px, po). f is a function for, if the 
G-extensions (KXQ)X~,G, (KXQ}.Xv,G are equivaient, 1E,!--1E~,I. 
ttecau~ (KXQ)X,G is eqdivalem as a ~ro~,~ e x ~ i o ~  t.~ (KXQ)R~,G 
there i~ a group isc~morphism ~: (KXQ)XrG ~= [R'XQ)2~,G. He-~  

~ ( ~ )  (0) = ~ d ( g )  d ( g )  -~) = ~(J(g)) ~.(.r(g))--, ~ p'(~) ((~ 
and cr induces a G-is.zr.aorphism E ~  E' implying IE~[ = IE.~,{. It is clear 
t h a t / i s  the inverse ~ofand  hence / i s  a bijection~ 

Remark: We e x t e n d / t o  an isomorpbSsm S a~!.;an groups by pusb~ing 
the group structure in Ext~(Q,K) into the set of equivalence c~a~ses of  
G-extensi0ns of  TCvx,pe): 

[(~.XQ) x~G[ + [(xxo)  Xr G! = (KXQ) X,. G! 

where p~ is the action of  G on the G-enlargeme.~t E~ + E~,. I f  K is an R -  
module and px(g)(r.k) = r.p(D(k ) for all .g ,.z G, r ~ R, ~c ~ K, the set of 
equivalence classes of  G-extensions of T(pr,Pa) is an R-moduIe with zero 
element T(pr,pe). Let us use the symbol Ext(T(p~,po)) for this set of  
equivalence classes of  G-extensions of  T(p~,pe). 

Corollary: There ]s an R-module isomorphism (R = Z in the trivial case) 
H~)(G, Horn (Q, IC)) ~ Ext (TC.p~,po)). 

Proof: Combine propositions (i) and (2). 

Remark: We now show how the scrod-direct product structures oF G- 
extensions . . . . . . . .  " . . . . . .  . . . . . . . . . . . .  K m i ~r,pa.t l n u u ~  non-spin ext~n~u~ o~ QXpa G by . 



Propo~/o~ (3): T I ~ :  ~s a h~m,c~orphisr~ 

W h ~ ,  for (q,8) ~ QXrQ ~;, &(q,  ~) - r d D .  

for 
(q,~) ~ Qx~,,fi a~cl ~ E z,'(G, rlorn (p, ~,:3) 

~ Z2~ ( C2 XpQ G, K) fo~o'+~ flora ~he, fac~ that 

'~(~,)((q~,g,),fq--,g~)dq,,~)) e, .~g(q, ,g~),(q, ,~))  

= g , .  o(g, . )  ( g~ . q~)  - g~.  ~ ( g ~ ) ( g 7  ~ . g, g~) 

-- a(g 0 (g~ g~ .qz) + ~r(g~) (g~.q2) 

= 0  

Suppose that u , ,  ~ e Z ,  ~ (G, Hem (Q,.,~/), we show that [a~ [ = i uz[ irnp]~e~ 

~,,~((q,; z,),(.7,,gg) - %,((q,,g0, (q~,g~)) = ~,(g,)  ( g , . q 9  ~ ,r~(g,)(g,.q~) 
= 6(0) (gO (g,.q9 

for ~/~ Horn (Q, K). 
Now ~5(~)(gO(g i.qz) = gl. ~(g~.)~- e.~,~-qDo Let ~s define Z : Q.X'p~G -> 

- ; Q, g ~ G. Th.eu X by (q,g) - ;:,(q) for q 

~(Z) ((q,, gO, (q~, gg)  = g~. Z(q~, q:) - zfq~ g~.q:, e~ g~.) + z(q~, s 0  

Therefore ?,, - 7,= ~, o(Z) or ~,tl  = l?,~, and ? defined by y : la[ ~ lff~i .;s 
a xunction from H p(G, Hom(Q,K))  into H~,(Q~poG,  K) r is in fact a 
group homomorphism. For ~ is 

7~,+,~((q~,g~), (qz, gz)) = a~ + az(g~) (g~.qz) 

= g~(g~) (g~ .g~) + a~(g~)(g~.q~) 
= ~ +  ~,=((q:, g,, (q~' g~)) 
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Coroll~3,: The gro~ h 6 m ~ r p h i s ~  ? from fP(G, i I om(Q,g ) )  to 

B~(QXpoG~ induc~ a _~rou~ ho~omorphL~ f r ~  ~hr grou~ 
Ext(T(pK,)~Q)) to the grotrp Exth~QXpQG, K ) e f  group exterasion classes 
of QXpo G by g .  

l~q.~itions: A T-k/nemafical group i~ any H-extension of  the S~a~5c 
group viewed as a split extension of  H by an / -~!a rLmment  of  T by. S. 
An S-kinematical group is an .H~extens~on of  the Stafie gro~rp ~dewed a s  
a split extension of  an H enlargement of S by T. Thus the Galilei group 
i~ a T-kinematical group and the Carol{ group an S-kinematical group. 

T&eorem (4): "/here is an R-medule i somo~Asm bevc,~en the i~-module 
tI, Z(H, Hem(T,S)) and the R-module of  equivaI~ce classes of  T-kine- 
znaficat groups and an ~.-isomorphism b e ~ , ~ n  the R-module /-/~,(H, 
Hom(S,T)) and ~ r  Romodule of  equivMence elasse~ of  S~kinematica t. 
groups. 

Proof:That Hp~(tt, Hom(T,S)) is an R-rnodulr fo~Aows from the ~ac~ 
Ihat  S is an .r~-modute and H a~s ~-Iinearly an S (as a rotation group). 
Similarly H~,(H, Hom(S,T)) is an ~-modu!e ~cause T ~  R and H~c t s  
~ iv '~ ty  on 7'. The next follows from proposition (2). 

Theorem (5): " I ~  is m~ ~-homomorphism be twe':.~, the P~-module of 

lence classes of  extensions of TXtlby S, and an ~-h.~momorp~A~m be~wee~ 
the ~-module of  equivalence classes of  S-kinematical groups and ~h.e 
R-modnle of  equivalevxe cla~ses of  central extensions of  SXV~ H by Z 

Proof: Use proposition (3) aad its corollary I1. 

Conjecture (1): That the ikqear space of  equi~,de~r~-e classes of  T-kinr 
mafical groups is 1-dimensional ? 

Proof: Hp~(H, Hom(T,S)) ~ ~?  Suppose a eZ~(H, Hom(7;S)) then 
for (v, r) e H, t e T 

a(V, r) (tt + t2) = a(v, r) (tL) + o(v, r) (tO 
a(vx + r~ .v2, ra rz) (t) = o'(vz, r~) (t) + r~. a(vZ, r~) (t) 

These identities result in the fo!towing 

a(v, r) (t) = 6"((v~ e) (0, r)) (t) 
= a(v, e) (t) + a(O, r) (t) 
= a((O,r)(r-'.v,e))(t) 
= ~-(0, r) (t) + r.a(r-~v,e)(t) 

Consider the function $ : 0(3, ~) ~ Horn(T, S); 

~(r) (t) = a(0, r) (t). ~ e Z,.~(0(3~ ~),_H_om ( L  S)) 



For 

But 

G, S. ~ T O N  

~ ' (o0 ,  ~), ~ (r, s)) = :e2(oO,.~), Horn (v, s)) 

~or  ~f P ~s ~ e  invetsion x ~-r--x, ~"~O(3,R))=Z2(P) and one can easily 
show ~(r) =-~{6(~,(P)) (r) for shy  l~cc<3'cle ~. Such a coboundary yields a 
:e~)boundary. of  Z,~(H~Hom(T,S))  so we may equa~ ~*.%r)(t) = 0 for all 
r ~ 0(3, ~), t ~ T. Thus we are left with 

~I~,r) ( 0  = ~ ( ~ , 8 ( 0 =  x(v) (t) 

and the function Z : HQ ~ H e ~  (Y, S) satisfies 

z ( : - ' .  0 q )  = r. z(v) (t) a~d z (~  + ~ )  = z(v~) + z(v9 

The first must imply that X(v) q)  = ).o(t). v for 2, : ~ -+ ~. F m  ~,e no~e :~at 
l(~,(~)) = !(v) for 2~,(v)= Z(v)(t) and thus  ~,,(v)and t~ are co|i~_ear (where 
isthe iso~opy group in 0(.3, ~)). 2, i s aZ-en domorphism of [~. We conjecture 
2~ i~ in fac~ ~ linear wh~,'.h ~ p l i ~  fi~(t)= tfi~(1)= to* for a*~  ~. I f  
t ~ s  i~ true Ig] ~-*~* w~!_l ~ .~- ~-isomorphism. (That it is a fimction 
f~lto'."~ fram=~: abo-~.~) !t~ im'e:~ ~ de~.~ed by 0~ ~ [r where for ~ ~ ,R, 
~,(v,.r) O) = =~,to 

CoroS~ ' :  Ztt ~ t,~. above~ conject l~ i~ true t~e ~.aJ J . ~ r  spaz~ of eq~d- 
vnlence classes of TA:inemafical groups is generated by the eqmvaieace 
class of the Gal~ei goup.  

Proqf: The Galilei group is the T-kinematical group co~zesponding to 
-~ 1 at3ove. 

t2~. That o f  equivaIende classes of S~kine- Conjecture ~ ~" theiinear space 
mafical groups is l-dimensional over N ? 

Proof: If  q5 e Z~,:(H, Hom (S, T)), we must require that 

r r.) (x~ + xD = r r) (xO -~ r r) (xD 
r + r~.v~,r~ rD = r rO (x) + r x) 

We obtain then the foi[owing identities 

r  = r (0, r)) = r r) (k') = r e) (x) + r r) (x) 
~(~, r,) = r ~) (r -~ v, e)) = r r) (~) = r r) (x) + r  -~,,, e) (r -~ .x) 

I f  r -- u(r), we have 

. p e Z.'-(0,', R ) , H o m ( S , T ) )  = B~n(O(3, R ) ,Hom(S ,T ) )  

which knd uces a boundary of the group B~.(H, Hem (S, T)) and we may thus 
~luate  r = 0 and obtain r  = p(p)(x) w~ere o(c) (x) = r (x) 
"~ind p satisfies p(r .r) (r .x)  = p(v)(x) for any rotation r: with 



T h a s  p m u ~  be sgme ~-biiinear function P+* ~,'~ ~ ~ ~:. Which is ix)tatior) 
inwriant .  We czmi.ec~m ~ha~ !b~m p(v,r)  ~ ~+Q_,Ir) whex'e (I) is ~he s c a ~  

_product in ~ and a~ ~ [L I f th is  is lr~a l~bl ~-+ a~ is a bijection 

H' g(h, Hon~ (S, T)) =..- ,~ 

for the eorrespondenc,  is a furic~Aon as we saw above and has an i~verse 

Corollary: I f  t he  above conjecfnre ~s true then the real linear space of  
exluivalence classe~ o f  S~izi~ewm*_ic~l groul~  iz generated by I he equivalence 
e t a ~  ~ f~e .  C~rroll grot~ .  

t u  T h e  Carroll group corresponds to $~~ 
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